کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل


 

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کاملکلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

 

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کاملکلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل



جستجو



 



2-1-  اهدف تحقیق

امروزه امنیت شبکه ­های اطلاعاتی، یکی از مسائل چالش برانگیز در حوزه علوم کامپیوتری می­باشد. دامنه حملات به شبکه­ های کامپیوتری هر روز گسترده­تر می­ شود؛ اما مسئولیت شناسایی و مسدود کردن حملات در کاربران نهایی و سرویس­دهندگان اینترنت به عهده مدیران این سیستم­ها واگذار شده است. وجود نقاط آسیب­پذیر در سیستم­های اطلاعاتی به همراه رشد انفجاری انواع مختلف بدافزار، باعث شده تا روند به­روز نگه­داشتن سیستم­های شناسایی نفوذ مبتنی بر امضا با دشواری­هایی مواجه گردد. در نتیجه این سیستم­ ها قادر به شناسایی حملات نوظهور نخواهند بود. سیستم­های شناسایی نفوذ مبتنی بر ناهنجاری نیز علی­رغم قابلیت تطبیق­ پذیری­شان و توانمندی در شناسایی حملات نوظهور, بسیار وابسته به تعریفی که از مدل نرمال سیستم ارائه می­ شود، هستند.

طی ­چند سال اخیر، شبکه­­های اجتماعی تبدیل به قطب مرکزی اطلاعات و ارتباطات گردیده و به شکل روزافزون مورد توجه و حمله قرار گرفته­اند. این مسئله سبب شده تا تشخیص نفوذگران از کاربران عادی، تبدیل به یکی از مسائل چالش­برانگیز در رابطه با شبکه­ های اجتماعی گردد. در تحقیق پیش رو بر اساس رویکرد مبتنی بر ناهنجاری، به بررسی چگونگی شناسایی نفوذگران در شبکه­ های اجتماعی خواهیم پرداخت. تمرکز اصلی ما بر این مطلب استوار است که قادر باشیم به صورت پویا و با کمترین پیچیدگی زمان و فضا، نفوذگر را شناسایی کرده و به شکل فعال، نسبت به وی عکس العمل نشان دهیم.  

یکی از ویژگی­های شبکه­ های اجتماعی این است که الگوی ارتباطی و در نتیجه الگوی رفتار اجتماعی کاربران شبکه را به وضوح انعکاس می­ دهند [5]. به همین دلیل برای ساخت مدل رفتار نرمال در شبکه و شناسایی انحرافات از این مدل نرمال جهت شناسایی رفتار نابهنجار کاربران شبکه، تمرکز ما در این تحقیق بر شناسایی نفوذگران بر مبنای رفتار آنها در شبکه­ های اجتماعی خواهد بود. برای شناسایی نفوذگران در یک شبکه، مفهوم متفاوتی از نفوذ، مبنای کار قرار داده شده است: “نفوذ، ورود یک فرد به اجتماعی[2] است که به آن تعلق ندارد”. بر اساس این مفهوم می­بایست ابتدا گراف ارتباطات شبکه را شکل داده، اجتماعات را در گراف تعیین کرد و در ادامه تعلق

2-1-  اهدف تحقیق

امروزه امنیت شبکه ­های اطلاعاتی، یکی از مسائل چالش برانگیز در حوزه علوم کامپیوتری می­باشد. دامنه حملات به شبکه­ های کامپیوتری هر روز گسترده­تر می­ شود؛ اما مسئولیت شناسایی و مسدود کردن حملات در کاربران نهایی و سرویس­دهندگان اینترنت به عهده مدیران این سیستم­ها واگذار شده است. وجود نقاط آسیب­پذیر در سیستم­های اطلاعاتی به همراه رشد انفجاری انواع مختلف بدافزار، باعث شده تا روند به­روز نگه­داشتن سیستم­های شناسایی نفوذ مبتنی بر امضا با دشواری­هایی مواجه گردد. در نتیجه این سیستم­ ها قادر به شناسایی حملات نوظهور نخواهند بود. سیستم­های شناسایی نفوذ مبتنی بر ناهنجاری نیز علی­رغم قابلیت تطبیق­ پذیری­شان و توانمندی در شناسایی حملات نوظهور, بسیار وابسته به تعریفی که از مدل نرمال سیستم ارائه می­ شود، هستند.

طی ­چند سال اخیر، شبکه­­های اجتماعی تبدیل به قطب مرکزی اطلاعات و ارتباطات گردیده و به شکل روزافزون مورد توجه و حمله قرار گرفته­اند. این مسئله سبب شده تا تشخیص نفوذگران از کاربران عادی، تبدیل به یکی از مسائل چالش­برانگیز در رابطه با شبکه­ های اجتماعی گردد. در تحقیق پیش رو بر اساس رویکرد مبتنی بر ناهنجاری، به بررسی چگونگی شناسایی نفوذگران در شبکه­ های اجتماعی خواهیم پرداخت. تمرکز اصلی ما بر این مطلب استوار است که قادر باشیم به صورت پویا و با کمترین پیچیدگی زمان و فضا، نفوذگر را شناسایی کرده و به شکل فعال، نسبت به وی عکس العمل نشان دهیم.  

یکی از ویژگی­های شبکه­ های اجتماعی این است که الگوی ارتباطی و در نتیجه الگوی رفتار اجتماعی کاربران شبکه را به وضوح انعکاس می­ دهند [5]. به همین دلیل برای ساخت مدل رفتار نرمال در شبکه و شناسایی انحرافات از این مدل نرمال جهت شناسایی رفتار نابهنجار کاربران شبکه، تمرکز ما در این تحقیق بر شناسایی نفوذگران بر مبنای رفتار آنها در شبکه­ های اجتماعی خواهد بود. برای شناسایی نفوذگران در یک شبکه، مفهوم متفاوتی از نفوذ، مبنای کار قرار داده شده است: “نفوذ، ورود یک فرد به اجتماعی[2] است که به آن تعلق ندارد”. بر اساس این مفهوم می­بایست ابتدا گراف ارتباطات شبکه را شکل داده، اجتماعات را در گراف تعیین کرد و در ادامه تعلق داشتن و یا نداشتن یک فرد به یک اجتماع را استخراج کرد.

برای شناسایی الگوهای ارتباطی کاربران، از داده ­های جریان شبکه[3] که شامل جریان داده میان میزبان­های نهایی که توسط آدرس­های IP نشان داده می­شوند، می­توان استفاده کرد. همان طور که می­دانیم بسیاری از روش­های تشخیص نفوذ، قادر نیستند تنها با داشتن این اطلاعات ساده کار کنند و نیاز به ویژگی­های متعددی در مورد ارتباطات کاربر در شبکه دارند.

یکی از دلایلی که سبب شده تا در این تحقیق توجه خود را معطوف به مجموعه داده­ جریان شبکه کنیم، این است که این نوع مجموعه داده دارای تعداد ویژگی کمتری نسبت به مجموعه داده ­های متداول -که در رویکرد مبتنی بر ناهنجاری استفاده می­شوند- می­باشند؛ در نتیجه می ­تواند در رسیدن به هدف این تحقیق که همان استفاده از سیستم در کوتاهترین زمان است به ما کمک کند. این نوع مجموعه داده بر مبنای اطلاعات ضبط شده دیواره­ های آتش، از فراهم کننده­ های سرویس اینترنتی[4] جمع آوری می­شوند. همان طور که ذکر شد، مجموعه داده ­های متداول جهت تحقیق در زمینه سیستم­های شناسایی نفوذ مبتنی بر ناهنجاری – مانند KDD99- دارای تعداد ویژگی بیشتری نسبت به داده ­های جریان شبکه هستند. علاوه بر این، با توجه به ظهور روش­های نفوذ و بدافزارهای جدید، بدیهی است که استفاده از مجموعه داده ­هایی که مربوط به سال­های اخیر باشد را می­توان در اولویت کار قرار داده شود.

[1] Firewall

[2] Community

[3] Netflow data

[4] ISP

https://fozi.ir/%d9%be%d8%a7%db%8c%d8%a7%d9%86-%d9%86%d8%a7%d9%85%d9%87-%d8%a7%d8%b1%d8%b4%d8%af-%d8%b1%d8%b4%d8%aa%d9%87-%d9%87%d9%88%d8%b4-%d9%85%d8%b5%d9%86%d9%88%d8%b9%db%8c-%d8%b4%d9%86%d8%a7%d8%b3%d8%a7%db%8c/

 داشتن و یا نداشتن یک فرد به یک اجتماع را استخراج کرد.

برای شناسایی الگوهای ارتباطی کاربران، از داده ­های جریان شبکه[3] که شامل جریان داده میان میزبان­های نهایی که توسط آدرس­های IP نشان داده می­شوند، می­توان استفاده کرد. همان طور که می­دانیم بسیاری از روش­های تشخیص نفوذ، قادر نیستند تنها با داشتن این اطلاعات ساده کار کنند و نیاز به ویژگی­های متعددی در مورد ارتباطات کاربر در شبکه دارند.

یکی از دلایلی که سبب شده تا در این تحقیق توجه خود را معطوف به مجموعه داده­ جریان شبکه کنیم، این است که این نوع مجموعه داده دارای تعداد ویژگی کمتری نسبت به مجموعه داده ­های متداول -که در رویکرد مبتنی بر ناهنجاری استفاده می­شوند- می­باشند؛ در نتیجه می ­تواند در رسیدن به هدف این تحقیق که همان استفاده از سیستم در کوتاهترین زمان است به ما کمک کند. این نوع مجموعه داده بر مبنای اطلاعات ضبط شده دیواره­ های آتش، از فراهم کننده­ های سرویس اینترنتی[4] جمع آوری می­شوند. همان طور که ذکر شد، مجموعه داده ­های متداول جهت تحقیق در زمینه سیستم­های شناسایی نفوذ مبتنی بر ناهنجاری – مانند KDD99- دارای تعداد ویژگی بیشتری نسبت به داده ­های جریان شبکه هستند. علاوه بر این، با توجه به ظهور روش­های نفوذ و بدافزارهای جدید، بدیهی است که استفاده از مجموعه داده ­هایی که مربوط به سال­های اخیر باشد را می­توان در اولویت کار قرار داده شود.

[1] Firewall

[2] Community

[3] Netflow data

[4] ISP

موضوعات: بدون موضوع  لینک ثابت
[شنبه 1400-05-09] [ 09:26:00 ب.ظ ]




1-1- تعریف سیستم های نظارت چهره راننده

همراه با توسعه صنعت خودرو در جهان، کاربرد فناوری‏های نوین در اتومبیل نیز افزایش یافته است. سیستم‏های حمل و نقل هوشمند[1] یا به اختصار ITS، کاربرد کامپیوتر و فناوری اطلاعات و ارتباطات در شبکه‏های حمل و نقل انسان و کالا است. سیستم پیشرفته دستیار راننده[2] یکی از بخش‏های سیستم حمل و نقل هوشمند محسوب می‏گردد. این سیستم‏ها برای بهبود کارایی خودرو و افزایش امنیت راننده و سرنشینان آن استفاده می‏شوند و در مواقع بحرانی، به راننده اعلام هشدار کرده یا به جای راننده تصمیم مناسب را برای کنترل و هدایت خودرو اتخاذ می‏کنند.

سیستم نظارت چهره راننده، یک سیستم بلادرنگ[3] است که بر اساس پردازش تصویر چهره راننده، وضعیت جسمی و تا حدی وضعیت روحی او را تحت نظارت قرار می‏دهد. معمولا وضعیت راننده از بسته بودن پلک‏ها، نحوه پلک‏زدن، خیره بودن چشم‏ها به نقطه خاص، جهت نگاه چشم، خمیازه کشیدن و حرکت سر قابل تشخیص است. این سیستم در هنگام خواب‏آلودگی، خستگی و عدم توجه راننده به جاده، اعلام هشدار[4] می‏کند.

2-1- ضرورت سیستم‏های نظارت چهره راننده

یکی از مهمترین عوامل موثر در تصادفات، خصوصا در جاده‏های بین شهری[5]، خستگی، خواب‏آلودگی و عدم تمرکز حواس راننده است. خستگی و خواب‏آلودگی باعث کاهش درک و قدرت تصمیم‏ گیری راننده برای کنترل خودرو می‏شود. تحقیقات نشان می‏دهد معمولا به طور طبیعی، پس از یک ساعت رانندگی، راننده دچار خستگی می‏شود. اما در ساعات ابتدایی بعد از ظهر، بعد از نهار و همچنین در نیمه شب، راننده در مدت زمان بسیار کمتر از یک ساعت احساس خواب‏آلودگی می‏کند. البته علاوه بر دلایل طبیعی، مصرف الکل، مواد مخدر و دارو‏هایی که منجر به کاهش هوشیاری می‏شوند نیز در خواب‏آلودگی راننده تاثیر‏گذار است [1-3]. عمده تصادفاتی که علت اصلی آن خستگی یا

1-1- تعریف سیستم های نظارت چهره راننده

همراه با توسعه صنعت خودرو در جهان، کاربرد فناوری‏های نوین در اتومبیل نیز افزایش یافته است. سیستم‏های حمل و نقل هوشمند[1] یا به اختصار ITS، کاربرد کامپیوتر و فناوری اطلاعات و ارتباطات در شبکه‏های حمل و نقل انسان و کالا است. سیستم پیشرفته دستیار راننده[2] یکی از بخش‏های سیستم حمل و نقل هوشمند محسوب می‏گردد. این سیستم‏ها برای بهبود کارایی خودرو و افزایش امنیت راننده و سرنشینان آن استفاده می‏شوند و در مواقع بحرانی، به راننده اعلام هشدار کرده یا به جای راننده تصمیم مناسب را برای کنترل و هدایت خودرو اتخاذ می‏کنند.

سیستم نظارت چهره راننده، یک سیستم بلادرنگ[3] است که بر اساس پردازش تصویر چهره راننده، وضعیت جسمی و تا حدی وضعیت روحی او را تحت نظارت قرار می‏دهد. معمولا وضعیت راننده از بسته بودن پلک‏ها، نحوه پلک‏زدن، خیره بودن چشم‏ها به نقطه خاص، جهت نگاه چشم، خمیازه کشیدن و حرکت سر قابل تشخیص است. این سیستم در هنگام خواب‏آلودگی، خستگی و عدم توجه راننده به جاده، اعلام هشدار[4] می‏کند.

2-1- ضرورت سیستم‏های نظارت چهره راننده

یکی از مهمترین عوامل موثر در تصادفات، خصوصا در جاده‏های بین شهری[5]، خستگی، خواب‏آلودگی و عدم تمرکز حواس راننده است. خستگی و خواب‏آلودگی باعث کاهش درک و قدرت تصمیم‏ گیری راننده برای کنترل خودرو می‏شود. تحقیقات نشان می‏دهد معمولا به طور طبیعی، پس از یک ساعت رانندگی، راننده دچار خستگی می‏شود. اما در ساعات ابتدایی بعد از ظهر، بعد از نهار و همچنین در نیمه شب، راننده در مدت زمان بسیار کمتر از یک ساعت احساس خواب‏آلودگی می‏کند. البته علاوه بر دلایل طبیعی، مصرف الکل، مواد مخدر و دارو‏هایی که منجر به کاهش هوشیاری می‏شوند نیز در خواب‏آلودگی راننده تاثیر‏گذار است [1-3]. عمده تصادفاتی که علت اصلی آن خستگی یا عدم تمرکز حواس اعلام می‏شود، در جاده‏های بین شهری و برای خودرو‏های سنگین رخ می‏دهد. اکثر این تصادفات در حدود ساعت 6-2 یا 16-15 به وقوع می‏پیوندد [2].

در کشور‏های مختلف، آمار متفاوتی در مورد تصادفاتی که به علت خستگی و عدم تمرکز حواس راننده رخ می‏دهد، ارائه شده اما به طور کلی می‏توان گفت علت حدود 20% از تصادفات و 30% از تصادفات منجر به مرگ، خواب‏آلودگی و عدم تمرکز حواس راننده است. در تصادفات تک خودرو[6] یا تصادفات خودرو‏های سنگین این رقم تا 50% نیز گزارش شده است [1, 4-10].

با توجه به خسارات‏های جانی و مالی فراوان حاصل از خواب‏آلودگی و عدم تمرکز حواس راننده، طراحی و توسعه سیستم‏های تشخیص خواب‏آلودگی و عدم تمرکز حواس بسیار ضروری به نظر می‏رسد. یکی از بهترین روش‏های کاربردی برای این منظور، نظارت چهره راننده است. بر اساس مطالعات صورت گرفته، پیش‏بینی می‏شود استفاده از سیستم‏های تشخیص خواب ‏آلودگی و عدم تمرکز حواس بتواند بین 10% تا 20% از تصادفات بکاهد [14].

3-1- چالش‏های اساسی در سیستم‏های نظارت چهره راننده

مشکل اساسی دیگر، اندازه‏گیری میزان توجه راننده به جاده است. میزان توجه راننده را می‏توان از جهت سر و جایی که چشم‏ها به آنجا نگاه می‏کند تا حدی تخیمن زد. اما مشکل این است که اگر جهت سر به سمت جلو و نگاه به سمت جاده باشد، لزوما راننده به جاده توجه نمی‏کند. به عبارت دیگر نگاه کردن به جاده به معنی توجه کردن به آن نیست [9].

جدا از چالش‏های اصلی سیستم‏های نظارت چهره راننده، پیاده‏سازی بلادرنگ سیستم بر روی سخت‏افزار‏های معمول، کاهش خطای سیستم در آشکارسازی چهره، کاهش خطای ردیابی چهره، افزایش کارایی روش‏های استخراج ویژگی و افزایش دقت الگوریتم‏های تشخیص خواب‏آلودگی و عدم تمرکز حواس از دیگر مشکلات این سیستم‏ها محسوب می‏شود.

[1] Intelligent Transportation System (ITS)

[2] Advanced Driver Assistant System (ADAS)

[3] Real-Time

[4] Alarm

[5] Rural Road

[6] Single-Vehicle Accident

[7] Gross Domestic Product (GDP)

[8] Quantitative

[9] Percentage of Eyelid Closure Over Time (PERCLOS)

پایان نامه و مقاله

 عدم تمرکز حواس اعلام می‏شود، در جاده‏های بین شهری و برای خودرو‏های سنگین رخ می‏دهد. اکثر این تصادفات در حدود ساعت 6-2 یا 16-15 به وقوع می‏پیوندد [2].

در کشور‏های مختلف، آمار متفاوتی در مورد تصادفاتی که به علت خستگی و عدم تمرکز حواس راننده رخ می‏دهد، ارائه شده اما به طور کلی می‏توان گفت علت حدود 20% از تصادفات و 30% از تصادفات منجر به مرگ، خواب‏آلودگی و عدم تمرکز حواس راننده است. در تصادفات تک خودرو[6] یا تصادفات خودرو‏های سنگین این رقم تا 50% نیز گزارش شده است [1, 4-10].

با توجه به خسارات‏های جانی و مالی فراوان حاصل از خواب‏آلودگی و عدم تمرکز حواس راننده، طراحی و توسعه سیستم‏های تشخیص خواب‏آلودگی و عدم تمرکز حواس بسیار ضروری به نظر می‏رسد. یکی از بهترین روش‏های کاربردی برای این منظور، نظارت چهره راننده است. بر اساس مطالعات صورت گرفته، پیش‏بینی می‏شود استفاده از سیستم‏های تشخیص خواب ‏آلودگی و عدم تمرکز حواس بتواند بین 10% تا 20% از تصادفات بکاهد [14].

3-1- چالش‏های اساسی در سیستم‏های نظارت چهره راننده

مشکل اساسی دیگر، اندازه‏گیری میزان توجه راننده به جاده است. میزان توجه راننده را می‏توان از جهت سر و جایی که چشم‏ها به آنجا نگاه می‏کند تا حدی تخیمن زد. اما مشکل این است که اگر جهت سر به سمت جلو و نگاه به سمت جاده باشد، لزوما راننده به جاده توجه نمی‏کند. به عبارت دیگر نگاه کردن به جاده به معنی توجه کردن به آن نیست [9].

جدا از چالش‏های اصلی سیستم‏های نظارت چهره راننده، پیاده‏سازی بلادرنگ سیستم بر روی سخت‏افزار‏های معمول، کاهش خطای سیستم در آشکارسازی چهره، کاهش خطای ردیابی چهره، افزایش کارایی روش‏های استخراج ویژگی و افزایش دقت الگوریتم‏های تشخیص خواب‏آلودگی و عدم تمرکز حواس از دیگر مشکلات این سیستم‏ها محسوب می‏شود.

[1] Intelligent Transportation System (ITS)

[2] Advanced Driver Assistant System (ADAS)

[3] Real-Time

[4] Alarm

[5] Rural Road

[6] Single-Vehicle Accident

[7] Gross Domestic Product (GDP)

[8] Quantitative

[9] Percentage of Eyelid Closure Over Time (PERCLOS)

موضوعات: بدون موضوع  لینک ثابت
 [ 09:26:00 ب.ظ ]




مسائل بسیاری وجود دارند که محدود به یک راه­حل منحصر به فرد نمی­باشند. علاوه براین، برخی از مسائل ممکن است تعداد نامحدودی مسیرهای پاسخ مشابه، داشته باشند. یک ناسازگاری[1] هنگامی روی می­دهد که تصمیم­های گوناگونی، متناظر با مسیرهای پاسخ متمایز، فراهم باشد.

به طور کلی در سیستمی که دارای مجموعه­های نسبتاً بزرگی از قوانین و حقایق باشد، درج یک حقیقت می ­تواند منجر به صحیح شدن ارزش چندین قانون و در نتیجه فعال شدن آنها گردد. هر ترتیبی از اجرای این قوانین، می ­تواند نتایج متفاوتی را به دنبال داشته باشد که در این صورت این مجموعه از قوانین، مجموعه­ی قوانین ناسازگار نامیده می­شوند. یک استراتژی رفع ناسازگاری ترتیبی را برای اجرای این مجموعه از قوانین تعیین می­نماید.

سیستم­های هوشمند از قبیل سیستم­های مبتنی بر قانون، ابزارهای برنامه­ ریزی، و ساختارهای وابسته به دانش، از استراتژی­ های متفاوتی برای رفع ناسازگاری استفاده می­ کنند] 2[.

در این پژوهش در ابتدا در رابطه با این شیوه ­های متفاوت توضیحاتی ارائه می­گردد و پس از آن ایده­ایی که به منظور رفع ناسازگاری در سیستم پیشنهادی بکار برده شده، شرح داده می­ شود. سیستم پیشنهادی یک سیستم تصمیم­همیار هوشمند است که به منظور یاری رساندن به یک بازیکن در یک بازی استراتژیک بلادرنگ طراحی و پیاده­سازی شده و شرح ساختار و ویژگی­های آن در فصول آتی آمده است. همچنین در این پایان نامه در ارتباط با سیستم­های تصمیم­همیار هوشمند و ساختارهای مختلفی که محققان برای پیاده­سازی این سیستم­ها در نظر گرفته­اند، نیز مطالبی ارائه شده است.

2-1- رفع ناسازگاری

در بسیاری از سیستم­های مبتنی بر قانون، موتور استنتاج، یک مولفه­ی نرم­افزاری است که در هنگام اجرای برنامه­ی کاربردی، بر روی مجموعه ­ایی از قوانین، استنتاج می­ کند. از جمله مهمترین وظایفی که توسط موتور استنتاج صورت می­گیرد، رفع ناسازگاری است] 47[. به طور کلی، رفع ناسازگاری، یک استراتژی، برای انتخاب ترتیب اجرای قوانین است هنگامی که بیش از یک قانون بتواند اجرا شود.

برای رفع ناسازگاری روش­های مختلفی وجود دارد. ساده­ترین راه­حل، انتخاب تصادفی قوانین است. در برخی از استراتژی­ها، از جمله مهمترین فاکتورهایی که در انتخاب قوانین موثر است مقدار اولویتی است که توسط سازنده­ی سیستم به هر قانون اختصاص داده می­ شود که در این روش برای قوانین با الویت یکسان باید از روش دیگری استفاده گردد. روش­های خبره­تر از اطلاعات آماری مرتبط با موفقیت­ها و عدم موفقیت­های پیشین در هنگام بکار بردن قوانین مختلف، به منظور پی­بردن به احتمال موفقیت، استفاده می­ کنند. همچنین برخی از روش­ها، هزینه­ های قوانین را که نشان­دهنده تلاش­ هایی است که حل­کننده­ مسئله برای انجام اعمال بدان نیازمند است (مانند زمان) بحساب می­آورند] 2[.

روشی که در این پژوهش به منظور رفع ناسازگاری بکار برده شده، با در نظر گرفتن یک خط استنتاج جداگانه برای هر یک از قوانین ناسازگار در طی روند استنتاج، تمامی حالات ممکن برای اولویت­ بندی در اجرای قوانین را تحت پوشش قرار می­دهد.

مسائل بسیاری وجود دارند که محدود به یک راه­حل منحصر به فرد نمی­باشند. علاوه براین، برخی از مسائل ممکن است تعداد نامحدودی مسیرهای پاسخ مشابه، داشته باشند. یک ناسازگاری[1] هنگامی روی می­دهد که تصمیم­های گوناگونی، متناظر با مسیرهای پاسخ متمایز، فراهم باشد.

به طور کلی در سیستمی که دارای مجموعه­های نسبتاً بزرگی از قوانین و حقایق باشد، درج یک حقیقت می ­تواند منجر به صحیح شدن ارزش چندین قانون و در نتیجه فعال شدن آنها گردد. هر ترتیبی از اجرای این قوانین، می ­تواند نتایج متفاوتی را به دنبال داشته باشد که در این صورت این مجموعه از قوانین، مجموعه­ی قوانین ناسازگار نامیده می­شوند. یک استراتژی رفع ناسازگاری ترتیبی را برای اجرای این مجموعه از قوانین تعیین می­نماید.

سیستم­های هوشمند از قبیل سیستم­های مبتنی بر قانون، ابزارهای برنامه­ ریزی، و ساختارهای وابسته به دانش، از استراتژی­ های متفاوتی برای رفع ناسازگاری استفاده می­ کنند] 2[.

در این پژوهش در ابتدا در رابطه با این شیوه ­های متفاوت توضیحاتی ارائه می­گردد و پس از آن ایده­ایی که به منظور رفع ناسازگاری در سیستم پیشنهادی بکار برده شده، شرح داده می­ شود. سیستم پیشنهادی یک سیستم تصمیم­همیار هوشمند است که به منظور یاری رساندن به یک بازیکن در یک بازی استراتژیک بلادرنگ طراحی و پیاده­سازی شده و شرح ساختار و ویژگی­های آن در فصول آتی آمده است. همچنین در این پایان نامه در ارتباط با سیستم­های تصمیم­همیار هوشمند و ساختارهای مختلفی که محققان برای پیاده­سازی این سیستم­ها در نظر گرفته­اند، نیز مطالبی ارائه شده است.

2-1- رفع ناسازگاری

در بسیاری از سیستم­های مبتنی بر قانون، موتور استنتاج، یک مولفه­ی نرم­افزاری است که در هنگام اجرای برنامه­ی کاربردی، بر روی مجموعه ­ایی از قوانین، استنتاج می­ کند. از جمله مهمترین وظایفی که توسط موتور استنتاج صورت می­گیرد، رفع ناسازگاری است] 47[. به طور کلی، رفع ناسازگاری، یک استراتژی، برای انتخاب ترتیب اجرای قوانین است هنگامی که بیش از یک قانون بتواند اجرا شود.

برای رفع ناسازگاری روش­های مختلفی وجود دارد. ساده­ترین راه­حل، انتخاب تصادفی قوانین است. در برخی از استراتژی­ها، از جمله مهمترین فاکتورهایی که در انتخاب قوانین موثر است مقدار اولویتی است که توسط سازنده­ی سیستم به هر قانون اختصاص داده می­ شود که در این روش برای قوانین با الویت یکسان باید از روش دیگری استفاده گردد. روش­های خبره­تر از اطلاعات آماری مرتبط با موفقیت­ها و عدم موفقیت­های پیشین در هنگام بکار بردن قوانین مختلف، به منظور پی­بردن به احتمال موفقیت، استفاده می­ کنند. همچنین برخی از روش­ها، هزینه­ های قوانین را که نشان­دهنده تلاش­ هایی است که حل­کننده­ مسئله برای انجام اعمال بدان نیازمند است (مانند زمان) بحساب می­آورند] 2[.

روشی که در این پژوهش به منظور رفع ناسازگاری بکار برده شده، با در نظر گرفتن یک خط استنتاج جداگانه برای هر یک از قوانین ناسازگار در طی روند استنتاج، تمامی حالات ممکن برای اولویت­ بندی در اجرای قوانین را تحت پوشش قرار می­دهد.

3-1- سیستم ­های تصمیم­ همیار و سیستم­های تصمیم­ همیار هوشمند

به طور کلی، اخذ تصمیم، یکی از مهم­ترین و حساس­ترین فعالیت­هایی است که در هر سازمان و یا تشکیلاتی صورت می­گیرد] 48[. برای پشتیبانی و حمایت از این روند پیچیده، دسته­ی متنوعی از   سیستم­های اطلاعاتی مستقل بنام سیستم­های تصمیم­همیار، در طی دو دهه­ گذشته به وجود آمده­اند. این سیستم­ها به صورت ابزارهای مبتنی بر کامپیوتری که به منظور پشتیبانی از روند پیچیده­ اخذ تصمیم و حل مسئله ایجاد می­شوند، تعریف و در جهت ایجاد محیطی برای تحلیل مسائل، ساخت مدل­ها و شبیه­سازی رویه­ی تصمیم ­گیری و برنامه­ های تصمیم­ گیرندگان طراحی می­گردند] 49[.

این سیستم­های اطلاعاتی، که به منظور حمایت فعل و انفعالی از تمامی مراحل روند اخذ تصمیم یک کاربر، طراحی می­شوند، می­توانند شامل تکنولوژی­هایی برگرفته از زمینه ­های علمی مختلف شامل حسابداری، علوم شناختی، علوم کامپیوتر، اقتصاد، مهندسی، مدیریت، آمار و … باشند و اغلب از سه مولفه­ی زیرسیستم داده، زیر سیستم مدل (که دارای مکانیزمی برای پردازش داده می­باشد) و زیرسیستم ارتباط با کاربر، تشکیل شده ­اند] 19[.

تعاریف مختلفی از تفاوت­های میان یک سیستم تصمیم­همیار و یک سیستم تصمیم­همیار هوشمند وجود دارد که این امر به دلیل وجود انواع مختلف سیستم­های تصمیم­همیار هوشمند می­باشد. در این سیستم­ها، عملکرد هوشمندانه در تصمیم­گیری، با بهبودهایی نظیر ارتقاء سیستم مدیریت پایگاه مدل و یا تقویت فاصل کاربر با بهره گرفتن از تکنیک­های گوناگون هوش مصنوعی مانند پردازش زبان طبیعی و یا سایر تکنیک­های مشابه، میسر شده است. همچنین، این نوع از سیستم­ها با حمایت از مسائلی با عدم قطعیت، امکان پشتیبانی از محدوده­ وسیع­تری از تصمیمات را فراهم ساخته و می­توانند قلمروهایی را کنترل و مدیریت نمایند که در آنها روند تصمیم ­گیری پیچیده­تر بوده و علاوه بر مهارت و خبرگی، به ارزیابی اثر راه­حل پیشنهادی نیز نیاز دارد. از دیگر مزایای سیستم­های تصمیم­همیار هوشمند نسبت به سیستم­های تصمیم­همیار، بهبود سازگاری در تصمیمات، بهبود تشریح و تفسیر و توجیه پیشنهادات ارائه شده توسط سیستم می­باشد] 19[.

Holsapple و Whinston از اولین محققانی بودند که به طراحی و مطالعه­ سیستم­های تصمیم­همیار هوشمند، پرداختند] 51[. آنها مشخصه ­های زیر را برای این سیستم­ها پیشنهاد دادند:

– این سیستم­ها شامل انواع مختلف دانش که نمودهای انتخاب شده­ایی از دنیای تصمیم­گیرنده را توصیف می­ کنند، می­باشند.

– این سیستم­ها دارای توانایی بدست آوردن و نگهداری دانش توصیفی[2] مانند نگهداری رویداد[3] و انواع دیگر دانش هستند.

– این سیستم­ها می­توانند دانش را به شیوه ­های مختلف تولید نموده و ارائه دهند.

– آنها می­توانند دانشی را برای ارائه یا بدست آوردن دانش جدید، انتخاب نمایند.

– این سیستم­ها می­توانند به صورت مستقیم (هوشمند) با تصمیم­گیرنده در ارتباط باشند.

اگرچه این سیستم­ها حامیانی هوشمند و انسان­گونه در روند تصمیم ­گیری هستند، اما تصمیم­گیرندگان باید تصمیمات نهایی و بحرانی را خود اتخاذ نمایند.

4-1- هدف از این پایان ­نامه

هدف از این پایان­ نامه، ارائه­ یک سیستم تصمیم­همیار هوشمند است که در هنگام وقوع ناسازگاری، برای هر یک از قوانین ناسازگار، یک خط استنتاج مجزا را در نظرگرفته و با پیشبرد استنتاج در هر یک از این خطوط، امکان آگاهی از نتایج انتخاب هر یک از راه­ حل­های ممکن را برای تصمیم­گیرنده فراهم می­سازد. این سیستم، یک سیستم مبتنی بر قانون است که به منظور یاری­نمودن یک بازیکن در یک بازی استراتژیک بلادرنگ طراحی و پیاده­سازی شده است.

در این پژوهش، روش­های گوناگونی که به منظور رفع ناسازگاری در سیستم­های هوشمند بکار برده شده و نیز ساختارهای مختلفی که برای سیستم­های تصمیم­همیار هوشمند مورد استفاده قرار گرفته، بررسی و ارائه شده است.

5-1- نگاه کلی به فصول پایان ­نامه

[1] Conflict

2 Descriptive knowledge

[3] Record keeping

مقالات و پایان نامه ارشد

 

3-1- سیستم ­های تصمیم­ همیار و سیستم­های تصمیم­ همیار هوشمند

به طور کلی، اخذ تصمیم، یکی از مهم­ترین و حساس­ترین فعالیت­هایی است که در هر سازمان و یا تشکیلاتی صورت می­گیرد] 48[. برای پشتیبانی و حمایت از این روند پیچیده، دسته­ی متنوعی از   سیستم­های اطلاعاتی مستقل بنام سیستم­های تصمیم­همیار، در طی دو دهه­ گذشته به وجود آمده­اند. این سیستم­ها به صورت ابزارهای مبتنی بر کامپیوتری که به منظور پشتیبانی از روند پیچیده­ اخذ تصمیم و حل مسئله ایجاد می­شوند، تعریف و در جهت ایجاد محیطی برای تحلیل مسائل، ساخت مدل­ها و شبیه­سازی رویه­ی تصمیم ­گیری و برنامه­ های تصمیم­ گیرندگان طراحی می­گردند] 49[.

این سیستم­های اطلاعاتی، که به منظور حمایت فعل و انفعالی از تمامی مراحل روند اخذ تصمیم یک کاربر، طراحی می­شوند، می­توانند شامل تکنولوژی­هایی برگرفته از زمینه ­های علمی مختلف شامل حسابداری، علوم شناختی، علوم کامپیوتر، اقتصاد، مهندسی، مدیریت، آمار و … باشند و اغلب از سه مولفه­ی زیرسیستم داده، زیر سیستم مدل (که دارای مکانیزمی برای پردازش داده می­باشد) و زیرسیستم ارتباط با کاربر، تشکیل شده ­اند] 19[.

تعاریف مختلفی از تفاوت­های میان یک سیستم تصمیم­همیار و یک سیستم تصمیم­همیار هوشمند وجود دارد که این امر به دلیل وجود انواع مختلف سیستم­های تصمیم­همیار هوشمند می­باشد. در این سیستم­ها، عملکرد هوشمندانه در تصمیم­گیری، با بهبودهایی نظیر ارتقاء سیستم مدیریت پایگاه مدل و یا تقویت فاصل کاربر با بهره گرفتن از تکنیک­های گوناگون هوش مصنوعی مانند پردازش زبان طبیعی و یا سایر تکنیک­های مشابه، میسر شده است. همچنین، این نوع از سیستم­ها با حمایت از مسائلی با عدم قطعیت، امکان پشتیبانی از محدوده­ وسیع­تری از تصمیمات را فراهم ساخته و می­توانند قلمروهایی را کنترل و مدیریت نمایند که در آنها روند تصمیم ­گیری پیچیده­تر بوده و علاوه بر مهارت و خبرگی، به ارزیابی اثر راه­حل پیشنهادی نیز نیاز دارد. از دیگر مزایای سیستم­های تصمیم­همیار هوشمند نسبت به سیستم­های تصمیم­همیار، بهبود سازگاری در تصمیمات، بهبود تشریح و تفسیر و توجیه پیشنهادات ارائه شده توسط سیستم می­باشد] 19[.

Holsapple و Whinston از اولین محققانی بودند که به طراحی و مطالعه­ سیستم­های تصمیم­همیار هوشمند، پرداختند] 51[. آنها مشخصه ­های زیر را برای این سیستم­ها پیشنهاد دادند:

– این سیستم­ها شامل انواع مختلف دانش که نمودهای انتخاب شده­ایی از دنیای تصمیم­گیرنده را توصیف می­ کنند، می­باشند.

– این سیستم­ها دارای توانایی بدست آوردن و نگهداری دانش توصیفی[2] مانند نگهداری رویداد[3] و انواع دیگر دانش هستند.

– این سیستم­ها می­توانند دانش را به شیوه ­های مختلف تولید نموده و ارائه دهند.

– آنها می­توانند دانشی را برای ارائه یا بدست آوردن دانش جدید، انتخاب نمایند.

– این سیستم­ها می­توانند به صورت مستقیم (هوشمند) با تصمیم­گیرنده در ارتباط باشند.

اگرچه این سیستم­ها حامیانی هوشمند و انسان­گونه در روند تصمیم ­گیری هستند، اما تصمیم­گیرندگان باید تصمیمات نهایی و بحرانی را خود اتخاذ نمایند.

4-1- هدف از این پایان ­نامه

هدف از این پایان­ نامه، ارائه­ یک سیستم تصمیم­همیار هوشمند است که در هنگام وقوع ناسازگاری، برای هر یک از قوانین ناسازگار، یک خط استنتاج مجزا را در نظرگرفته و با پیشبرد استنتاج در هر یک از این خطوط، امکان آگاهی از نتایج انتخاب هر یک از راه­ حل­های ممکن را برای تصمیم­گیرنده فراهم می­سازد. این سیستم، یک سیستم مبتنی بر قانون است که به منظور یاری­نمودن یک بازیکن در یک بازی استراتژیک بلادرنگ طراحی و پیاده­سازی شده است.

در این پژوهش، روش­های گوناگونی که به منظور رفع ناسازگاری در سیستم­های هوشمند بکار برده شده و نیز ساختارهای مختلفی که برای سیستم­های تصمیم­همیار هوشمند مورد استفاده قرار گرفته، بررسی و ارائه شده است.

5-1- نگاه کلی به فصول پایان ­نامه

[1] Conflict

2 Descriptive knowledge

[3] Record keeping

موضوعات: بدون موضوع  لینک ثابت
 [ 09:25:00 ب.ظ ]




کلاسه بندی بر پایه الگوها[24]، یک متدلوژی جدید محسوب می شود. کشف الگوهایی که نشان دهنده تمایز بین کلاس های مختلف هستند، یکی از موضوعات مهم در داده کاوی محسوب می شود. در این تحقیق، ما کلاسه بندی را بر اساس الگوهایی به نام الگوهای نوظهور[25] (Emerging Patterns) که تمایز بین کلاس ها را بصورت بارزی نشان می دهند، از مجموعه داده ها[26] استخراج می کنیم و سپس، بر اساس آنها، کلاسه بندی را انجام می دهیم.

2-1-  مفهوم الگوهای نوظهور

مفهوم الگوهای نوظهور برای استخراج دانش از پایگاه داده ها توسط Dong و Li پیشنهاد شده است تا تغییرات قابل توجه بین کلاس ها را به تصویر بکشند [1]. یک الگوی نوظهور، ترکیب عطفی بین ویژگی هایی است که میزان احتمال حضور آن در یک کلاس نسبت به دیگر کلاس ها بطور قابل توجهی تغییر می کند [1،2]. این الگوها مفید هستند به این دلیل که قادر هستند تا وجه تمایز بین کلاس ها را بیان کنند. در صورتی که میزان فراوانی[27] هر الگو که در یک کلاس نسبت به دیگر کلاس ها قابل توجه باشد، نشان دهنده آن است که این الگو، بطور خاص به این کلاس اختصاص دارد و از طرفی این نوع الگوها برای پایگاه داده هایی که بحث محدودیت زمانی برای استخراج دانش از آنها مطرح است، اهمیت ویژه ای می یابند.

استخراج الگوهای نوظهور بدین صورت مطرح می شود: « پیدا کردن آیتم هایی که نرخ رشد[28] آن (که بصورت نسبت احتمال آن آیتم بین کلاس های مختلف تعریف می شود) از مقدار آستانه ای بیشتر باشد.» این مقدار آستانه باید بگونه ای انتخاب شود که الگوهای استخراجی ، تفاوت و تمایز بین کلاس های مختلف را نشان دهند. این الگوها در واقع مجموعه ای از آیتم ها هستند که بیان کننده ترکیب عطفی بین مقادیر ویژگی ها هستند [2].

نوعاً، تعداد الگوهای استخراجی بسیار زیاد است اما فقط شمار کمی از این الگوها برای تحلیل داده ها و کلاسه بندی مطلوب و مفید هستند. از آن جایی که مقدار زیادی از این الگوها بی ربط[29] و تکراری[30] هستند، دانش جدیدی را فراهم نمی کنند و لذا تاثیر نامطلوبی بر روی دقت کلاسه بند دارند که موجب کاهش دقت پیش بینی[31] می شوند. برای افزایش کارایی[32] و دقت، بایستی روالی را توسعه داد که الگوهای وابسته و غیر مفید حذف شوند تا شمار این الگوها کاهش یابد.

یک الگوی نوظهور با احتمال بالا در کلاس خودش و احتمال پایین در کلاس مقابلش می تواند برای تعیین یک نمونه تست بکار رود. قدرت این الگو توسط معیارهایی مثل فراوانی نسبی[33] و نرخ رشد ( نسبت احتمال الگو در یک کلاس نسبت به دیگر کلاس ها) آن بیان می شود.

3-1- مفهوم ویژگی های جریانی[44]

در داده های جریانی[45]، نمونه ها به مرور زمان دریافت می شوند در حالیکه تعداد ویژگی ها ثابت می باشد. اما در ویژگی های جریانی، تعداد داده های یادگیری ثابت می باشد ولی ویژگی ها بصورت دینامیک تولید می شوند و الگوریتم یادگیری به مرور زمان ویژگی ها را دریافت می دارد [31، 32]. در ویژگی های جریانی روال بدین صورت است ویژگی های توسط روش های تولید ویژگی مانند روش های یادگیری رابطه ای آماری[46] و تعاملات بین ویژگی ها[47]، تولید می شوند. مشکلاتی که در پی تولید ویژگی ها توسط این روش ها بروز می کند بدین شرح است که: 1) میلیون ها و یا حتی بیلیون ها ویژگی تولید می شوند که بدلیل محدودیت های حافظه امکان نگهداری این حجم از ویژگی وجود دارد و از طرفی زمان بسیار زیادی بایستی صرف شود تا فرایند یادگیری شروع شود. 2) ویژگی ها توسط کوئری های موجود در SQL تولید می شوند که اجرای این کوئری ها محدود به زمان پروسسور[48] است تقریبا پروسسور هر صدهزار کوئری را در 24 ساعت اجرا می کند. از طرفی بسیاری از ویژگی ها تولیدی بی ربط و تکراری هستند[49]. این موضوع نشان می دهد که شمار کمی از این ویژگی های تولیدی در عمل در فرایند یادگیری موثر است و لذا تولید ویژگی ها هزینه بر است [32]. بر این اساس برای فائق آمدن بر این مشکلات، مفهوم ویژگی های جریانی شکل گرفت و تلاش شد تا با تولید دینامیک ویژگی ها و بررسی این ویژگی ها در زمان تولید و تاثیر آن بر روال یادگیری فرایند تولید ویژگی ها را هدایت کنند.

برای برخورد با چالش های مطرح شده، بایستی فرایند یادگیری قابلیت پاسخگویی به ویژگی های جریانی را داشته باشد. در واقع، روال یادگیری بایستی بصورت افزایشی با دریافت هر ویژگی قابل بروزرسانی شدن داشته باشد بدون اینکه به اولین مرحله یادگیری بازگردد. لذا در راستای استخراج الگوهای قوی بایستی در ابتدا ویژگی ها بررسی شوند و ویژگی هایی که بی ربط هستند را حذف کرد، سپس از روی ویژگی های مفید و قوی ، الگوها را استخراج کرد.

[1] Classification

[2] Data mining

[3] Machine learning

[4] Neural networks

[5] Pattern recognition

[6] Training instances

[7] Features

کلاسه بندی بر پایه الگوها[24]، یک متدلوژی جدید محسوب می شود. کشف الگوهایی که نشان دهنده تمایز بین کلاس های مختلف هستند، یکی از موضوعات مهم در داده کاوی محسوب می شود. در این تحقیق، ما کلاسه بندی را بر اساس الگوهایی به نام الگوهای نوظهور[25] (Emerging Patterns) که تمایز بین کلاس ها را بصورت بارزی نشان می دهند، از مجموعه داده ها[26] استخراج می کنیم و سپس، بر اساس آنها، کلاسه بندی را انجام می دهیم.

2-1-  مفهوم الگوهای نوظهور

مفهوم الگوهای نوظهور برای استخراج دانش از پایگاه داده ها توسط Dong و Li پیشنهاد شده است تا تغییرات قابل توجه بین کلاس ها را به تصویر بکشند [1]. یک الگوی نوظهور، ترکیب عطفی بین ویژگی هایی است که میزان احتمال حضور آن در یک کلاس نسبت به دیگر کلاس ها بطور قابل توجهی تغییر می کند [1،2]. این الگوها مفید هستند به این دلیل که قادر هستند تا وجه تمایز بین کلاس ها را بیان کنند. در صورتی که میزان فراوانی[27] هر الگو که در یک کلاس نسبت به دیگر کلاس ها قابل توجه باشد، نشان دهنده آن است که این الگو، بطور خاص به این کلاس اختصاص دارد و از طرفی این نوع الگوها برای پایگاه داده هایی که بحث محدودیت زمانی برای استخراج دانش از آنها مطرح است، اهمیت ویژه ای می یابند.

استخراج الگوهای نوظهور بدین صورت مطرح می شود: « پیدا کردن آیتم هایی که نرخ رشد[28] آن (که بصورت نسبت احتمال آن آیتم بین کلاس های مختلف تعریف می شود) از مقدار آستانه ای بیشتر باشد.» این مقدار آستانه باید بگونه ای انتخاب شود که الگوهای استخراجی ، تفاوت و تمایز بین کلاس های مختلف را نشان دهند. این الگوها در واقع مجموعه ای از آیتم ها هستند که بیان کننده ترکیب عطفی بین مقادیر ویژگی ها هستند [2].

نوعاً، تعداد الگوهای استخراجی بسیار زیاد است اما فقط شمار کمی از این الگوها برای تحلیل داده ها و کلاسه بندی مطلوب و مفید هستند. از آن جایی که مقدار زیادی از این الگوها بی ربط[29] و تکراری[30] هستند، دانش جدیدی را فراهم نمی کنند و لذا تاثیر نامطلوبی بر روی دقت کلاسه بند دارند که موجب کاهش دقت پیش بینی[31] می شوند. برای افزایش کارایی[32] و دقت، بایستی روالی را توسعه داد که الگوهای وابسته و غیر مفید حذف شوند تا شمار این الگوها کاهش یابد.

یک الگوی نوظهور با احتمال بالا در کلاس خودش و احتمال پایین در کلاس مقابلش می تواند برای تعیین یک نمونه تست بکار رود. قدرت این الگو توسط معیارهایی مثل فراوانی نسبی[33] و نرخ رشد ( نسبت احتمال الگو در یک کلاس نسبت به دیگر کلاس ها) آن بیان می شود.

3-1- مفهوم ویژگی های جریانی[44]

در داده های جریانی[45]، نمونه ها به مرور زمان دریافت می شوند در حالیکه تعداد ویژگی ها ثابت می باشد. اما در ویژگی های جریانی، تعداد داده های یادگیری ثابت می باشد ولی ویژگی ها بصورت دینامیک تولید می شوند و الگوریتم یادگیری به مرور زمان ویژگی ها را دریافت می دارد [31، 32]. در ویژگی های جریانی روال بدین صورت است ویژگی های توسط روش های تولید ویژگی مانند روش های یادگیری رابطه ای آماری[46] و تعاملات بین ویژگی ها[47]، تولید می شوند. مشکلاتی که در پی تولید ویژگی ها توسط این روش ها بروز می کند بدین شرح است که: 1) میلیون ها و یا حتی بیلیون ها ویژگی تولید می شوند که بدلیل محدودیت های حافظه امکان نگهداری این حجم از ویژگی وجود دارد و از طرفی زمان بسیار زیادی بایستی صرف شود تا فرایند یادگیری شروع شود. 2) ویژگی ها توسط کوئری های موجود در SQL تولید می شوند که اجرای این کوئری ها محدود به زمان پروسسور[48] است تقریبا پروسسور هر صدهزار کوئری را در 24 ساعت اجرا می کند. از طرفی بسیاری از ویژگی ها تولیدی بی ربط و تکراری هستند[49]. این موضوع نشان می دهد که شمار کمی از این ویژگی های تولیدی در عمل در فرایند یادگیری موثر است و لذا تولید ویژگی ها هزینه بر است [32]. بر این اساس برای فائق آمدن بر این مشکلات، مفهوم ویژگی های جریانی شکل گرفت و تلاش شد تا با تولید دینامیک ویژگی ها و بررسی این ویژگی ها در زمان تولید و تاثیر آن بر روال یادگیری فرایند تولید ویژگی ها را هدایت کنند.

برای برخورد با چالش های مطرح شده، بایستی فرایند یادگیری قابلیت پاسخگویی به ویژگی های جریانی را داشته باشد. در واقع، روال یادگیری بایستی بصورت افزایشی با دریافت هر ویژگی قابل بروزرسانی شدن داشته باشد بدون اینکه به اولین مرحله یادگیری بازگردد. لذا در راستای استخراج الگوهای قوی بایستی در ابتدا ویژگی ها بررسی شوند و ویژگی هایی که بی ربط هستند را حذف کرد، سپس از روی ویژگی های مفید و قوی ، الگوها را استخراج کرد.

[1] Classification

[2] Data mining

[3] Machine learning

[4] Neural networks

[5] Pattern recognition

[6] Training instances

[7] Features

[8] Nominal

[9] Numerical

[10] Classifier

[11] Model

[12] Class label

[13] Unknown

[14] Supervised learning

[15] Unsupervised learning

[16] Clustering

[17] Scientific experiments

[18] Medical diagnosis

[19] Weather prediction

[20] Credit approval

[21] Customer segmentation

[22] Target marketing

[23] Fraud detection

[24] Patterns

[25] Emerging patterns

[26] Datasets

[27] Frequency

[28] Growth rate

[29] Irrelevant patterns

[30] Redundant patterns

[31] Predictive accuracy

[32] Performance

[33] Support

[34] Gene expression data

[35] Image processing

[36] Intrusion detection

[37] Outlier detection

[38] Fraud detection

[39] Imbalanced datasets

[40] Data streams

[41] BioInformatics

[42] Recommender systems

[43] Intensity

[44] Streaming features

[45] Data Streams

[46] Statistical Relational Learning

[47] Feature interaction

[48] CPU time

[49] Irrelevant Features

پایان نامه

 

[8] Nominal

[9] Numerical

[10] Classifier

[11] Model

[12] Class label

[13] Unknown

[14] Supervised learning

[15] Unsupervised learning

[16] Clustering

[17] Scientific experiments

[18] Medical diagnosis

[19] Weather prediction

[20] Credit approval

[21] Customer segmentation

[22] Target marketing

[23] Fraud detection

[24] Patterns

[25] Emerging patterns

[26] Datasets

[27] Frequency

[28] Growth rate

[29] Irrelevant patterns

[30] Redundant patterns

[31] Predictive accuracy

[32] Performance

[33] Support

[34] Gene expression data

[35] Image processing

[36] Intrusion detection

[37] Outlier detection

[38] Fraud detection

[39] Imbalanced datasets

[40] Data streams

[41] BioInformatics

[42] Recommender systems

[43] Intensity

[44] Streaming features

[45] Data Streams

[46] Statistical Relational Learning

[47] Feature interaction

[48] CPU time

[49] Irrelevant Features

موضوعات: بدون موضوع  لینک ثابت
 [ 09:24:00 ب.ظ ]




:

در دنیای امروز، ما با سیستم های پیچیده ای[1] در پیرامون خود احاطه شده ایم، از جامعه که در آن میلیون ها عضو با یکدیگر در حال تعامل هستند تا شبکه های تلفن همراه و کامپیوتر که میلیون ها کاربر را به یکدیگر متصل می‌کنند. همچنین توانایی ما برای استنتاج و درک محیط اطراف، وابسته به شبکه ای از میلیاردها سلول عصبی[2] در مغز ماست. این سیستم های پیچیده نقش های بسیار مهمی در جنبه های مختلف زندگی ما ایفا می‌کنند. درک، توصیف، پیش بینی و کنترل این سیستم ها از جمله بزرگترین چالش های ما در جهان مدرن است.

با توجه به اینکه از سال ها پیش بسیاری از این سیستم ها، مانند: ساختارها و واکنش های زیستی، راه های ارتباطی، روابط اجتماعی و نظایر آن و همچنین دانش مطالعه بر روی سیستم ها و شبکه ها شناخته شده اند، پرسشی که ممکن است مطرح شود این است که چرا اهمیت این موضوع تنها در چند دهه اخیر آشکار شده است؟ پاسخی که می‌توان داد این است که در گذشته ابزارهای مناسبی برای جمع آوری، نگهداری و پردازش این اطلاعات وجود نداشت اما امروزه با توسعه چشمگیر فناوری هایی نظیر کامپیوتر و شبکه های ارتباطی دیجیتال، این امکان فراهم آمده است که گردآوری، ترکیب، اشتراک و تحلیل این اطلاعات با سهولت، سرعت و دقت بالا و هزینه کم قابل اجرا باشد.

دانش شبکه[7]

دانش شبکه شاخه ای از علوم بشری است که به مطالعه بر روی شبکه ها می‌پردازد و تلاش می‌کند با بهره گرفتن از نتایج بررسی های خود، از آنها برای درک بهتر سیستم های پیچیده بهره بگیرد. به طور کلی می‌توان چهار ویژگی را برای این دانش برشمرد که در ادامه به اختصار به آنها اشاره می‌شود (1):

:

در دنیای امروز، ما با سیستم های پیچیده ای[1] در پیرامون خود احاطه شده ایم، از جامعه که در آن میلیون ها عضو با یکدیگر در حال تعامل هستند تا شبکه های تلفن همراه و کامپیوتر که میلیون ها کاربر را به یکدیگر متصل می‌کنند. همچنین توانایی ما برای استنتاج و درک محیط اطراف، وابسته به شبکه ای از میلیاردها سلول عصبی[2] در مغز ماست. این سیستم های پیچیده نقش های بسیار مهمی در جنبه های مختلف زندگی ما ایفا می‌کنند. درک، توصیف، پیش بینی و کنترل این سیستم ها از جمله بزرگترین چالش های ما در جهان مدرن است.

با توجه به اینکه از سال ها پیش بسیاری از این سیستم ها، مانند: ساختارها و واکنش های زیستی، راه های ارتباطی، روابط اجتماعی و نظایر آن و همچنین دانش مطالعه بر روی سیستم ها و شبکه ها شناخته شده اند، پرسشی که ممکن است مطرح شود این است که چرا اهمیت این موضوع تنها در چند دهه اخیر آشکار شده است؟ پاسخی که می‌توان داد این است که در گذشته ابزارهای مناسبی برای جمع آوری، نگهداری و پردازش این اطلاعات وجود نداشت اما امروزه با توسعه چشمگیر فناوری هایی نظیر کامپیوتر و شبکه های ارتباطی دیجیتال، این امکان فراهم آمده است که گردآوری، ترکیب، اشتراک و تحلیل این اطلاعات با سهولت، سرعت و دقت بالا و هزینه کم قابل اجرا باشد.

دانش شبکه[7]

دانش شبکه شاخه ای از علوم بشری است که به مطالعه بر روی شبکه ها می‌پردازد و تلاش می‌کند با بهره گرفتن از نتایج بررسی های خود، از آنها برای درک بهتر سیستم های پیچیده بهره بگیرد. به طور کلی می‌توان چهار ویژگی را برای این دانش برشمرد که در ادامه به اختصار به آنها اشاره می‌شود (1):

عملگرایی و تمرکز بر داده ها: بر خلاف نظریه گراف ها که بیشتر به جنبه های انتزاعی و ریاضی مسائل توجه دارد، این دانش بیشتر بر حوزه کاربرد عملی و داده های مسئله تمرکز می‌کند. به همین جهت ابزارها و روش هایی که در این زمینه ارائه می‌شوند، بر روی داده ها و مسائل واقعی آزمایش می‌شوند تا قابلیت و کارایی آنها مشخص شود.

پردازش و محاسبات: از آنجا که اغلب مسائل مطرح شده در این حوزه، حجم عظیمی از اطلاعات را در بر می‌گیرند، بخش مهمی از کار به طراحی و بکارگیری روش هایی معطوف می‌شود که بتوانند از عهده محاسبات سنگین مورد نیاز برآیند. به همین منظور طراحی الگوریتم ها، پایگاه داده ها و داده کاوی بخشی از ابزارهای نرم افزاری هستند که بسیار به کار برده می‌شوند.

کاربردهای دانش شبکه:

کارایی و تاثیر هر شاخه از علم، علاوه بر دستاوردهای نظری، در حوزه کاربردهای عملی نیز مورد بررسی قرار می‌گیرد. در این بخش به اختصار به چند مورد از کاربردهای دانش شبکه ها اشاره می‌کنیم.

کاربردهای اقتصادی

[1] http://www.google.com

[2] http://www.facebook.com

[3] http://www.cisco.com

[4] http://www.apple.com

[5] http://www.twitter.com

[1] Complex Systems

[2] Nerve Cells

[3] Search Engines

[4] Online Social Networks

[5] World Wide Web (WWW)

[6] URLs

[7] Network Science

[8] Data Mining

[9] Information Theory

پایان نامه و مقاله

 

عملگرایی و تمرکز بر داده ها: بر خلاف نظریه گراف ها که بیشتر به جنبه های انتزاعی و ریاضی مسائل توجه دارد، این دانش بیشتر بر حوزه کاربرد عملی و داده های مسئله تمرکز می‌کند. به همین جهت ابزارها و روش هایی که در این زمینه ارائه می‌شوند، بر روی داده ها و مسائل واقعی آزمایش می‌شوند تا قابلیت و کارایی آنها مشخص شود.

پردازش و محاسبات: از آنجا که اغلب مسائل مطرح شده در این حوزه، حجم عظیمی از اطلاعات را در بر می‌گیرند، بخش مهمی از کار به طراحی و بکارگیری روش هایی معطوف می‌شود که بتوانند از عهده محاسبات سنگین مورد نیاز برآیند. به همین منظور طراحی الگوریتم ها، پایگاه داده ها و داده کاوی بخشی از ابزارهای نرم افزاری هستند که بسیار به کار برده می‌شوند.

کاربردهای دانش شبکه:

کارایی و تاثیر هر شاخه از علم، علاوه بر دستاوردهای نظری، در حوزه کاربردهای عملی نیز مورد بررسی قرار می‌گیرد. در این بخش به اختصار به چند مورد از کاربردهای دانش شبکه ها اشاره می‌کنیم.

کاربردهای اقتصادی

[1] http://www.google.com

[2] http://www.facebook.com

[3] http://www.cisco.com

[4] http://www.apple.com

[5] http://www.twitter.com

[1] Complex Systems

[2] Nerve Cells

[3] Search Engines

[4] Online Social Networks

[5] World Wide Web (WWW)

[6] URLs

[7] Network Science

[8] Data Mining

[9] Information Theory

موضوعات: بدون موضوع  لینک ثابت
 [ 09:24:00 ب.ظ ]
 
مداحی های محرم